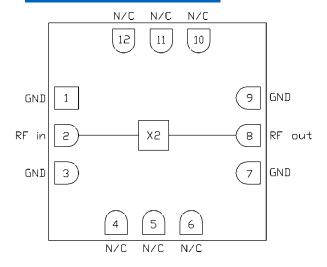


Frequency Doubler, 7-11 GHz Input


Features

- ► Low conversion loss
- ► Excellent Fo isolation
- ► Broadband performance
- ► No bias required

Description

The CMD226C3 is a broadband MMIC GaAs x2 passive frequency multiplier in a ceramic, QFN-style package. When driven by a +15 dBm signal, the multiplier provides 10.5 dB conversion loss at an output frequency of 18 GHz. The Fo and 3Fo isolations are 44 dBc and 46 dBc respectively. The CMD226C3 is a 50 ohm matched design eliminating the need for RF port matching.

Functional Block Diagram

Electrical Performance – T _A = 25 °C, Pin = +15 dBm, Fin = 9 GHz				
Parameter	Min	Тур	Max	Units
Frequency Range, Input	7 – 11 GHz			GHz
Frequency Range, Output	14 – 22 GHz			GHz
Conversion Loss		9		dB
Fo Isolation (with respect to input level)		44		dB
3Fo Isolation (with respect to input level)	48 dB		dB	
4Fo Isolation (with respect to input level)		50		dB

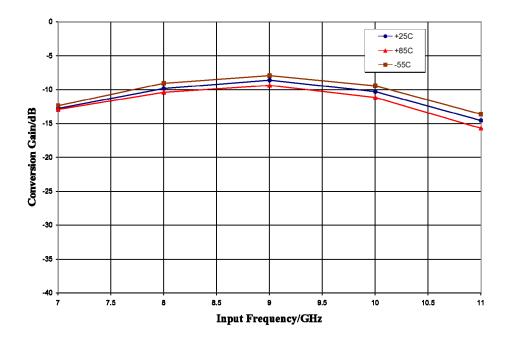
Frequency Doubler, 7-11 GHz Input

Specifications

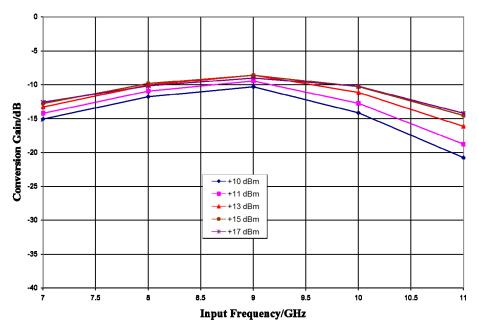
Absolute Maximum Ratings

Parameter	Rating		
RF Input Power	+22 dBm		
Operating Temperature	-40 to 85 °C		
Storage Temperature	-55 to 150 °C		
Thermal resistance, Θ _{JC}	689.2 °C/W		

Exceeding any one or combination of the maximum ratings may cause permanent damage to the device.

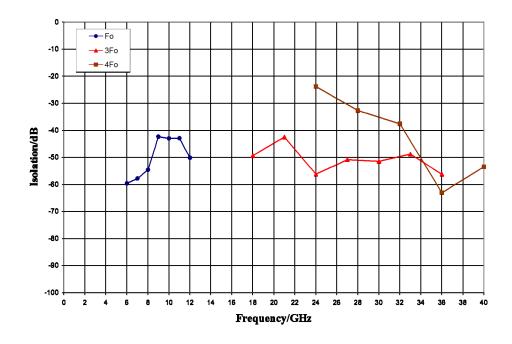

Electrical Specifications – $T_A = 25$ °C, Pin = +15 dBm

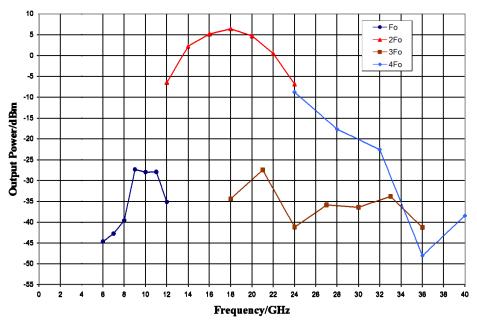
Parameter	Min	Тур	Max	Min	Тур	Max	Units
Frequency Range, Input	7 – 11		8 – 10			GHz	
Frequency Range, Output	14 – 22		16 – 20			GHz	
Conversion Loss		11	17		10.5	13	dB
Fo Isolation (with respect to input level)	33	44		33	44		dB
3Fo Isolation (with respect to input level)	37	50		45	52		dB
4Fo Isolation (with respect to input level)	22	45		35	45		dB


Frequency Doubler, 7-11 GHz Input

Typical Performance

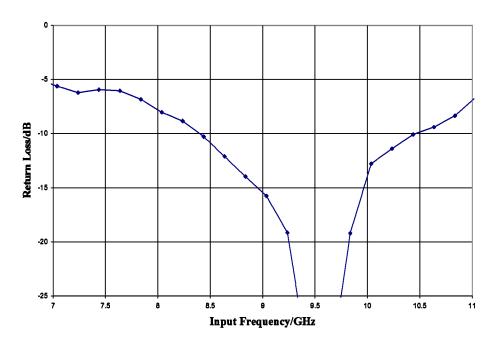
Conversion Gain vs. Temperature @ +15 dBm Drive Level

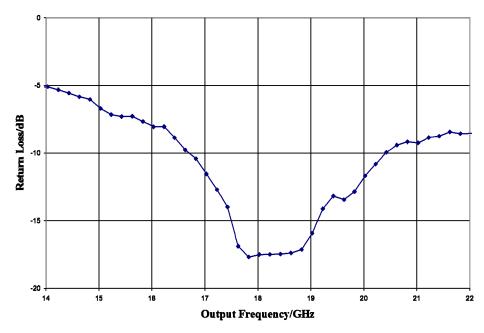

Conversion Gain vs. Drive Level, $T_A = 25$ °C


Frequency Doubler, 7-11 GHz Input

Typical Performance

Isolation (with respect to input level) @ +15 dBm Drive Level, $T_A = 25$ °C

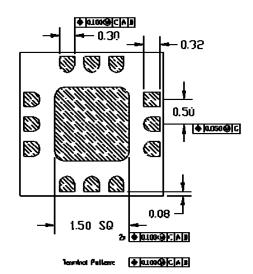

Output Spectrum @ +15 dBm Drive Level, $T_A = 25$ °C


Frequency Doubler, 7-11 GHz Input

Typical Performance

Input Return Loss @ +15 dBm Drive Level, $T_A = 25$ °C

Output Return Loss @ +15 dBm Drive Level, F = 9 GHz Input, T_A = 25 °C



Frequency Doubler, 7-11 GHz Input

Mechanical Information

Package Information and Dimensions

MOTES

- 1. ALL JOYENSIONS SHOWN DI no.
- 2. NATERIALI BLACK ALUNINA
- LEAD FINISH
- 3.1. Nº 8.89un NAX. L27un MIN 3.2. Par 0,17un NAX. 0,07un HIN
- Au- 0.254un HAZ. 0.03un HIN
- NARK ING
- 4.). LINE I: PART MUNBER 4.1. EXAMPLE: CHIIT7C3 SHALL BC MAPKED AS 177 42. LINE & LOT MUNBER
- 3. LINE 3: DATE CODE LAST 2 DIGITS OF THE YEAR OF NANUFACTUPE FOLLOWED BY A 2 DIGIT WEEK CODE ALTERNATE PIN NI LOENTIFIEP IS A SINGLE SQUARE PAD
- ALTERNATE DIE PADDLE NAY HAVE CHANFERED CORNERS

Recommended PCB Land Pattern

Custom MMIC Design Services recommends that the user develop the land pattern that will provide the best design for proper solder reflow and device attach for their specific application. Please review Custom MMIC Application Note AN 105 for a recommended land pattern approach.

Recommended Solder Reflow Profile

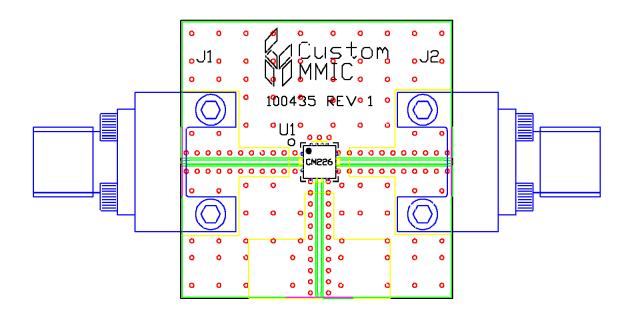

Custom MMIC Design Services recommends screen printing with belt furnace reflow to ensure proper solder reflow and device attach. Please review Custom MMIC Application Note AN 102 for a recommended solder reflow profile.

Frequency Doubler, 7-11 GHz Input

Pin Description

Pin Diagram

Functional Description


Pad	Function	Description	Schematic
1, 3, 7, 9 and die paddle	Ground	Connect to RF / DC ground	<u> </u>
2	RF in	Pin is DC coupled and 50 ohm matched	ļ
4-6, 10-12	N/C	No connection required. These pins may be connected to RF/DC ground	
8	RF out	Pin is DC coupled and 50 ohm matched	1

Frequency Doubler, 7-11 GHz Input

Applications Information

Evaluation Board

The circuit board shown has been developed for optimized assembly at Custom MMIC. A sufficient number of via holes should be used to connect the top and bottom ground planes. As surface mount processes vary, careful process development is recommended.

Bill of Material

Designator	Value	Description
J1 - J2		SMA End Launch Connector
U1		CMD226C3 Frequency Doubler
PCB		100435 Evaluation PCB

Please note, all information contained in this data sheet is subject to change without notice.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Qorvo:

CMD226C3 CMD226C3-EVB