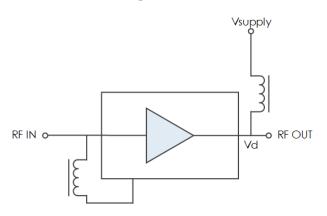
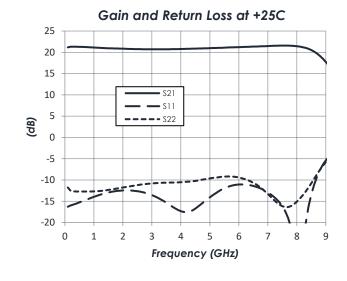
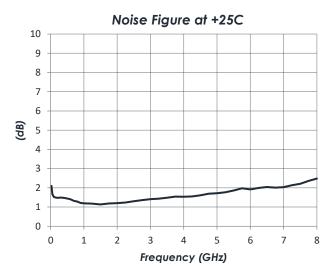
DC to 8 GHz Gain Block

Description

The AM1164 is a high dynamic range DC-coupled amplifier covering up to 8 GHz. The device exhibits a moderate positive gain-slope, providing frequency equalization useful in many broadband applications. AM1164 provides similar performance to Atlanta Micro's AM1064 with the benefit of improved low frequency NF. With internal 50Ω matching and packaged in a 1.3mm x 2.0mm DFN, a 3mm QFN or a shielded module, the AM1164 represents a compact total PCB footprint.




Features


- 21 dB Gain
- 1.5 dB Noise Figure
- +33 dBm OIP3
- +18 dBm P1dB
- +3.3V or +5.0V Operation
- 3mm QFN or 1.3mm x 2mm DFN
- -40C to +85C Operation

Functional Diagram

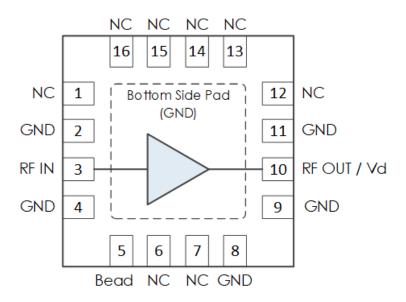
Characteristic Performance

AM1164 – Amplifier

DC to 8 GHz Gain Block

Table of Contents

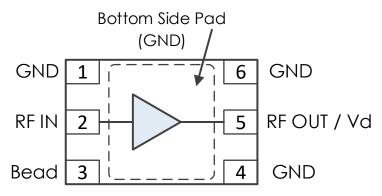
Description1	Recommended Operating Conditions 5
Features1	Thermal Information5
Functional Diagram1	DC Electrical Characteristics6
Characteristic Performance1	RF Performance6
Revision History2	Typical Performance7
Pin Layout and Definitions3	Typical Application9
AM1164-1: 3mm QFN3	Part Ordering Details10
AM1164-2: 1.3mm x 2mm DFN4	Related Parts10
Specifications5	Evaluation PC Board10
Absolute Maximum Ratings5	Component Compliance Information 11
Handling Information5	


Revision History

Date	Revision Number	Notes
June 28, 2019	1 Preliminary Release	
July 23, 2019	2	Added 1.3mm x 2mm DFN details.
September 6, 2019	2A	Added 1.3mm x 2mm DFN picture.
November 25, 2019	3	RF-Shielded Module Information Added, Updated packaging options in Description, Part Ordering Details Added
November 11, 2020	4	Package and Module information moved to main product page on website.
September 20, 2021	5	Updated s-parameter plots.

Pin Layout and Definitions

AM1164-1: 3mm QFN


Pin Number	Pin Name	Pin Function
1	NC	Not Connected*
2	GND	Ground - Common
3	RF In	RF Input – 50 Ohms – DC Coupled. External DC Blocking Capacitor Required
4	GND	Ground - Common
5	Bead	Connect to RF In through external ferrite bead or large
		inductor
6,7	NC	Not Connected*
8,9	GND	Ground - Common
10	RF Out / Vd	RF Output and DC Power Input – 50 Ohms – DC Coupled. External DC Blocking Capacitor Required
11	GND	Ground - Common
12-16	NC	Not Connected*
Case GND	GND	Ground - Common

^{*}NC pins may be grounded or left open

Pin Layout and Definitions (Continued)

AM1164-2: 1.3mm x 2mm DFN

Pin Number	Pin Name	Pin Function
1	GND	Ground - Common
2	RF In	RF Input – 50 Ohms – DC Coupled. External DC Blocking Capacitor Required
3	Bead	Connect to RF In through external ferrite bead or large inductor
4	GND	Ground – Common
5	RF Out	RF Output – 50 Ohms – DC Coupled. External DC Blocking Capacitor Required
6	GND	Ground - Common

Specifications

Absolute Maximum Ratings

	Minimum	Maximum
Supply Voltage	-0.3 V	+8.0 V
RF Input Power		+20 dBm
Operating Junction Temperature	-40 C	+150 C
Storage Temperature Range	-50 C	+150 C

Note: Any device operation beyond the Absolute Maximum Ratings may result in permanent damage to the device. The values listed in this table are extremes and do not imply functional operation of the device at these or any other conditions beyond what is listed under Recommended Operating Conditions. Any part subjected to conditions outside of what is recommended for an extended amount of time may suffer from reliability concerns.

Handling Information

	Minimum	Maximum
Storage Temperature Range (Recommended)	-50 C	+125 C
Moisture Sensitivity Level	MSL 3	

Atlanta Micro products are electrostatic sensitive. Follow safe handling practices to avoid damage

Recommended Operating Conditions

	Minimum	Typical	Maximum
Supply Voltage	+2.7 V		+5.2 V
Operating Case Temperature	-40 C		+85 C
Operating Junction Temperature	-40 C		+125 C

Thermal Information

	Thermal Resistance (°C / W)
Junction to Case Thermal Resistance (θ _{JC})	88

AM1164 - Amplifier

DC to 8 GHz Gain Block

DC Electrical Characteristics

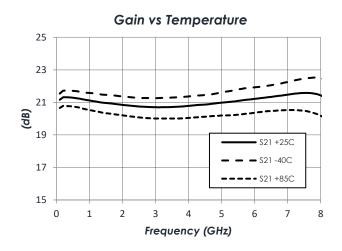
(T = 25 °C unless otherwise specified)

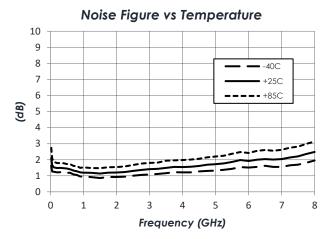
Parameter	Testing Conditions	Minimum	Typical	Maximum
Device Voltage (Vd)		+3.0 V	+4.7 V	+5.0 V
DC Supply Current	Vd = 3.1 V		35 mA	
	Vd = 3.3 V		40 mA	
	Vd = 4.7 V		77 mA	
	Vd = 5.0 V		85 mA	
Power Dissipated	Vd = 3.1 V		0.11 W	
	Vd = 3.3 V		0.13 W	
	Vd = 4.7 V		0.36 W	
	Vd = 5.0 V		0.43 W	

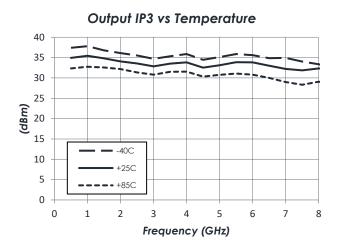
RF Performance

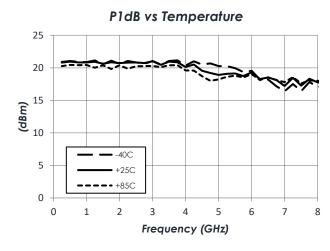
(T = 25 °C unless otherwise specified)

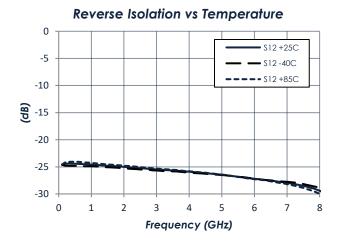
Parameter	Testing Conditions	Minimum	Typical	Maximum
Frequency Range		DC		8 GHz
Gain	Vd = 5.0 V		21.0 dB	
Return Loss	Vd = 5.0 V		11 dB	
Output IP3			+32 dBm	
Output P1dB			+18 dBm	
Noise Figure			1.5 dB	

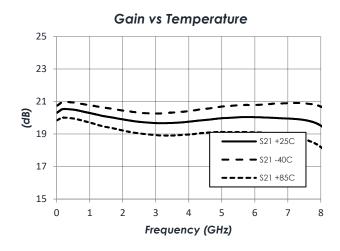

Notes:

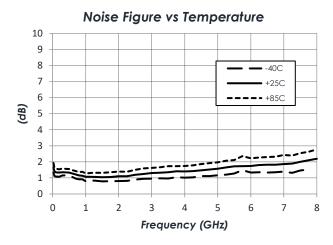

- 1. OIP3 shown was measured at 10 MHz input tone spacing
- 2. All performance metrics were measured using the recommended MMZ1005A222E ferrite bead connecting RF In and the Bead pin (see Typical Application section)

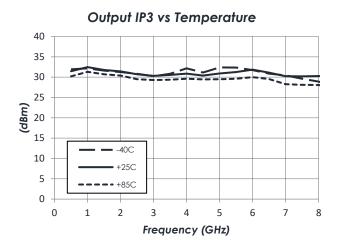


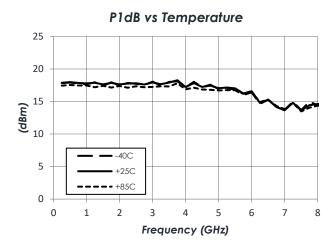

Typical Performance

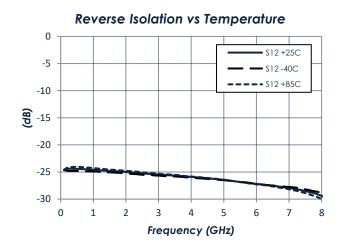

(Vd = +5.0 V, Id = 85 mA)

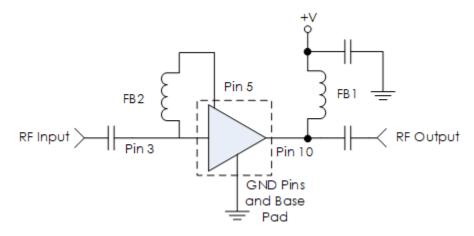





DC to 8 GHz Gain Block


Typical Performance (continued)


(Vd = +3.3 V, Id = 40 mA)



Typical Application

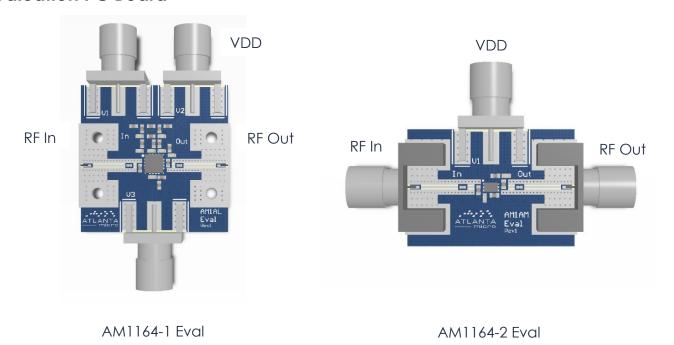
Recommended Component List (or equivalent):

Part	Value	Part Number	Manufacturer
C1, C2	0.1µF	0402BB104KW160	Passives Plus
C3	0.1µF	GRM155R71C104KA88	Murata
FB1	-	MMZ1005A222E	TDK
FB2	-	MMZ1005A222E	TDK

Notes:

- 1. NC pins may be grounded or left open.
- 2. RF blocking capacitors should be high performance, low-loss, broadband capacitors for optimum performance.
- 3. FB2 can be substituted for a different bead or inductor to extend performance to lower frequencies.

DC to 8 GHz Gain Block


Part Ordering Details

Description	Part Number
3mm 16 Lead QFN	AM1164-1
1.3mm x 2.0mm 6 Lead DFN	AM1164-2
AM1164-1 Evaluation Board	AM1164-1 Eval
AM1164-2 Evaluation Board	AM1164-2 Eval
AM1164-1 in 0.95" x 1.13" x 0.6" RF-Shielded Module with	AM1164-M
Integrated Bias Tee and Field Replaceable SMA Connectors	

Related Parts

Part Number				Description
AM1163	DC	to	10 GHz	Gain Block with External Bead
AM1063-1	DC	to	10 GHz	Gain Block
AM1063-2	DC	to	10 GHz	Miniature Gain Block
AM1064-1	DC	to	8 GHz	Gain Block
AM1064-2	DC	to	8 GHz	Miniature Gain Block
AM1016B	20 MHz	to	6 GHz	+3.3V Gain Block
AM1018C	20 MHz	to	6 GHz	+5.0V Gain Block
AM1025B	20 MHz	to	3 GHz	+8.0V Gain Block (High P1dB)
AM1031C	20 MHz	to	8 GHz	+3.3V Gain Block
AM1065	DC	to	8 GHz	Bypassable Gain Block
AM1073	DC	to	8 GHz	Bidirectional / Bypassable Gain Block

Evaluation PC Board

To obtain price, delivery, or to place an order contact sales@atlantamicro.com

DC to 8 GHz Gain Block

Component Compliance Information

RoHS: Atlanta Micro, Inc. hereby certifies that all products comply with the EC Directive 2011/65/EC on the Restriction of Hazardous Substances, commonly known as EU-RoHS 6 and 10. All products supplied by Atlanta Micro shall be compliant with the European Directive 2011/65/EC based on the following substance list.

Substance List	Allowable Maximum Concentration
Lead (Pb)	<1000 PPM (0.1% by weight)
Mercury (Hg)	<1000 PPM (0.1% by weight)
Cadmium (Cd)	<75 PPM (0.0075% by weight)
Hexavalent Chromium (CrVI)	<1000 PPM (0.1% by weight)
Polybrominated Biphenyls (PBB)	<1000 PPM (0.1% by weight)
Polybrominated Diphenyl ethers (PBDE)	<1000 PPM (0.1% by weight)
Decabromodiphenyl Deca BDE	<1000 PPM (0.1% by weight)
Bis (2-ethylheyl) Phthalate (DEHP)	<1000 PPM (0.1% by weight)
Butyl Benzyl Phthalate (BBP)	<1000 PPM (0.1% by weight)
Dibutyl Phthalate (DBP)	<1000 PPM (0.1% by weight)
Diisobutyl Phthalate (DIBP)	<1000 PPM (0.1% by weight)

REACH: Atlanta Micro, Inc. neither uses nor intentionally adds any of the substances considered to be a Substance of Very High Concern (SVHC) as defined by the EU Regulation (EC) No. 1907-2006 on Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH).

Conflict Materials: Atlanta Micro does not knowingly use materials that are sourced from the Democratic Republic of Congo (DRC) or any other known conflict regions. Atlanta Micro's supply chain is comprised of sources that are both environmentally and socially responsible. We periodically review this requirement with our vendors to ensure continued compliance.

Atlanta Micro takes its responsibility as a global partner seriously and will use due diligence within our supply chain to ensure all standards are met to the best of our knowledge.